Statified Inclined Duct

Adrien Lefauve et al.: Jamie Partridge Qi Zhou Stuart Dalziel Colm Caulfield Paul Linden Xianyang Jiang

What is it all about?

GKB lab lunch

12 June 2021

The Stratified Inclined Duct (SID)

The Stratified Inclined Duct (SID)

The physics

Focus: "temporary steady state"

Goal: Study **mixing** in a **simple** but **realistic stratified shear flow**

The mathematics

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla \boldsymbol{p} + \frac{1}{Re} \nabla^2 \boldsymbol{u} + Ri \rho \begin{pmatrix} \sin \theta \\ 0 \\ -\cos \theta \end{pmatrix}$$

$$\frac{\partial \rho}{\partial t} + \boldsymbol{u} \cdot \nabla \rho = \frac{1}{Re Pr} \nabla^2 \rho$$

- + initial conditions
- + boundary conditions
 - **Trivial** for whole system but **tricky** for duct section

y, *z*: no slip for \boldsymbol{u} , no flux for ρ

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla \boldsymbol{p} + \frac{1}{Re} \nabla^2 \boldsymbol{u} + Ri \rho \begin{pmatrix} \sin \theta \\ 0 \\ -\cos \theta \end{pmatrix}$$

$$\frac{\partial \rho}{\partial t} + \boldsymbol{u} \cdot \nabla \rho = \frac{1}{Re} \frac{\nabla^2 \rho}{Pr}$$

- + initial conditions
- + boundary conditions
 - **Trivial** for whole system but **tricky** for duct section

- *y*, *z*: no slip for \boldsymbol{u} , no flux for ρ
- *x*: non-periodic
 - in-flow of "fresh" fluid
 - out-flow of "mixed" fluid
 - mean flow U(y, z) feeding turbulence

Outline

1. The first discoveries

2. New measurements

Outline

1. The first discoveries

2. New measurements

Outline

1. The first discoveries

- 2. New measurements
- 3. Flow energetics
- 4. The future

1. The typical flow velocity is $U \sim \sqrt{g'H}$

salt flux measurements

2. There are four qualitative flow regimes

Shadowgraphs

L: Laminar

I: Intermittent

H: Holmboe waves

T: Turbulent

2. There are four qualitative flow regimes

Shadowgraphs

Laser Induced Fluorescence (LIF)

L: Laminar

H: Holmboe waves

I: Intermittent

T: Turbulent

2. There are four qualitative flow regimes

Shadowgraphs

Laser Induced Fluorescence (LIF)

L: Laminar

I: Intermittent

H: Holmboe waves

T: Turbulent

Partridge, Lefauve & Dalziel (Meas. Sci. Tech. 2019)

Obtain u, v, w and ρ in x, y, z, t!

Top view

3 x 8 Mpx cameras @ 200 fps

Partridge, Lefauve & Dalziel (Meas. Sci. Tech. 2019)

Obtain u, v, w and ρ in x, y, z, t!

Top view

3 x 8 Mpx cameras @ 200 fps

Partridge, Lefauve & Dalziel (Meas. Sci. Tech. 2019)

Obtain u, v, w and ρ in x, y, z, t!

Resolution

Top view

16 data sets in *θ*, *Re* plane each: ~150 GB of raw data ~2 GB once processed

3 x 8 Mpx cameras @ 200 fps

23

24

Flow regimes and $\langle \mathbf{s}'_{ij} \mathbf{s}'_{ij} \rangle \sim \theta Re$

Flow regimes and $\langle \mathbf{s}'_{ij} \mathbf{s}'_{ij} \rangle \sim \theta Re$

Flow regimes and $\langle \mathbf{s}'_{ij} \, \mathbf{s}'_{ij} \rangle \sim \theta \, Re$

Enstrophy fraction (% of volume where $|\omega'|^2 > 2$)

Overturn fraction (% of volume where $\partial_z \rho > 0$)

Flow regimes and $\langle \mathbf{s}'_{ij} \mathbf{s}'_{ij} \rangle \sim \theta Re$

Enstrophy fraction (% of volume where $|\omega'|^2 > 2$)

Overturn fraction (% of volume where $\partial_z \rho > 0$)

Flow regimes and $\langle \mathbf{s}'_{ij} \, \mathbf{s}'_{ij} \rangle \sim \theta \, Re$

Enstrophy fraction (% of volume where $|\omega'|^2 > 2$)

Overturn fraction (% of volume where $\partial_z \rho > 0$)

Re (log)

- Clearer optics (duct in air)
- Longer run times
- No free surfaces
- Adjust tilt during experiment

- Clearer optics (duct in air)
- Longer run times
- No free surfaces
- Adjust tilt during experiment

- Clearer optics (duct in air)
- Longer run times
- No free surfaces
- Adjust tilt during experiment

- Clearer optics (duct in air)
- Longer run times
- No free surfaces
- Adjust tilt during experiment

A new setup

- Clearer optics (duct in air)
- Longer run times
- No free surfaces
- Adjust tilt during experiment

Faster laser, cameras

100 planes / s

A new setup

- Clearer optics (duct in air)
- Longer run times
- No free surfaces
- Adjust tilt during experiment

Faster laser, cameras

100 planes / s

A new setup

- Clearer optics (duct in air)
- Longer run times
- No free surfaces
- Adjust tilt during experiment

Faster laser, cameras

1000 planes / s

- More instantaneous volume reconstruction
- Higher spatial and temporal resolution

Numerical simulations

Lower resolution, full geometry ("easy" BCs)

Higher resolution, duct sub-section ("hard" BCs)

Experiments

"Real" flow but errors "Low" resolution

Numerical simulations

Lower resolution, full geometry ("easy" BCs)

Higher resolution, duct sub-section ("hard" BCs)

"Real" flow but errors "Low" resolution

Experiments

