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What is it all about?
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Focus: “temporary steady state”
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Goal: Study mixing in a simple but  
          realistic stratified shear flow
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Isolate the flow inside the duct

The mathematics
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Parameters of SID
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convection 

SID 

unstable stable

Trivial for whole system 
but tricky for duct section 

:  no slip for , no flux for   y, z u ρ

:     non-periodic 
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The first discoveries

1. The typical flow velocity is   

  

U ∼ g ′ H

NOT a free fall (infinite duct  periodic BCs) 

          

⇔
KE ∼ (g ′ sin θ t)2×

Particle analogy

∂u
∂t

+ u
∂u
∂x

= − ∂p
∂x

+ 1
Re

∇2u + ρg ′ sin θ

 H

Like fall of a height  ?!  

         

 independent of tilt  and viscosity  ! 

H
KE ∼ g ′ H

θ Re
✓

∂u
∂t

+ u
∂u
∂x

= − ∂p
∂x

+ 1
Re

∇2u + ρg ′ sin θ

“hydraulic control”

Meyer & Linden (J. Fluid Mech. 2014) 

 KE ∼ g ′ H

NOT a fall of a height  balanced by 

         viscous friction:   

L tan θ
KE ∼ g ′ L tan θ Re

 L tan θ

×∂u
∂t

+ u
∂u
∂x

= − ∂p
∂x

+ 1
Re

∇2u + ρg ′ sin θ

 H
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The first discoveries

1. The typical flow velocity is     U ∼ g ′ H

control

control

  or  θ Re

U
g ′ H 0.5

“hydraulic control” limit

Meyer & Linden (J. Fluid Mech. 2014) 

salt flux measurements

flow

mix
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The first discoveries

2. There are four qualitative flow regimes 

      Shadowgraphs

H: Holmboe waves

I: Intermittent T: Turbulent

L: Laminar

Density field

δ

Meyer & Linden (J. Fluid Mech. 2014) 
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The first discoveries

const. ?θ Re =

2. There are four qualitative flow regimes 

    

Lefauve, Partridge & Linden (J. Fluid Mech. 2019) 
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New measurements
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3 x 8 Mpx cameras @ 200 fps 
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u , v, w ρ
x, y, z, t

New measurements Partridge, Lefauve & Dalziel (Meas. Sci. Tech. 2019) 
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pulsed laser 

fast scanning system

3 x 8 Mpx cameras @ 200 fps 

16

Obtain  and   
in  ! 

u , v, w ρ
x, y, z, t

16 data sets in  plane 
 each: ~150 GB of raw data  
           ~2 GB once processed 

θ, Re

New measurements

Resolution  
     400 x 30 x 80 x 300

x y z t

Partridge, Lefauve & Dalziel (Meas. Sci. Tech. 2019) 
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    Vertical plane

   θ = 6∘ Re = 1255

u

v

w

ρ

Vorticity ωy

New measurements Partridge, Lefauve & Dalziel (Meas. Sci. Tech. 2019) 
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Horizontal plane
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   θ = 6∘ Re = 1255

New measurements Partridge, Lefauve & Dalziel (Meas. Sci. Tech. 2019) 
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Flow energetics

viscous dissipation mixing 

internal 
(+ background 
potential)
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potential kinetic

buoyancy 
flux  
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mixing 
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viscous dissipation 

Flow energetics
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 u ′ = u − ū  ū = ⟨u ⟩x,t



21

internal

potential

out-flow 
(partially mixed) 

buoyancy 
flux  

viscous dissipation mixing 

Flow energetics

kinetic

turbulent mean

∼ 0.04 θ Reforcing 

duct reservoirs 

 u ′ = u − ū  ū = ⟨u ⟩x,t
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buoyancy 
flux  

viscous dissipation mixing 

Flow energetics
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turbulent mean
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duct reservoirs 

(hydraulic control) 

internal

potential

out-flow 
(partially mixed) 

Lefauve & Linden (arXiv 2021) 
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Flow energetics

Flow regimes and ⟨0′ ij 0′ ij⟩ ∼ θ Re

Lefauve & Linden (arXiv 2021) 
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Flow energetics

Flow regimes and ⟨0′ ij 0′ ij⟩ ∼ θ Re

const.θ Re =

Lefauve & Linden (arXiv 2021) 
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Flow energetics

Flow regimes and ⟨0′ ij 0′ ij⟩ ∼ θ Re

Overturn fraction (% of volume where )∂zρ > 0

Enstrophy fraction (% of volume where 2)|ω′ |2 >

  (log)θ

 (log)Re

θ Re

(θ Re) 3

Lefauve & Linden (arXiv 2021) 
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Flow energetics

Flow regimes and ⟨0′ ij 0′ ij⟩ ∼ θ Re

Overturn fraction (% of volume where )∂zρ > 0

Enstrophy fraction (% of volume where 2)|ω′ |2 >

  (log)θ

 (log)Re

θ Re

θ 3Re 1.5

(θ Re) 3
enstrophy > overturn

overturn > enstrophy
Next: 
identify flow structures 
responsible for 

 …ℬ, 3, ℰ, χ

Lefauve & Linden (arXiv 2021) 
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The future
A new setup

- Clearer optics  
   (duct in air) 

- Longer run times 
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- Adjust tilt during  
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The future
A new setup

- Clearer optics  
   (duct in air) 

- Longer run times 

- No free surfaces 

- Adjust tilt during  
  experiment

Faster laser, cameras 

1000 planes / s

- More instantaneous volume reconstruction 

- Higher spatial and temporal resolution



The future

Numerical simulations
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Lower resolution,  
full geometry 
(“easy” BCs)

Higher resolution, 
duct sub-section 
(“hard” BCs)

Credit:  
Ricardo Frantz  
          (Code: Xcompact3D)

Credit:  
Qi Zhou (Code: Diablo)

Experiments

“Real” flow but errors 
“Low” resolution
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Lower resolution,  
full geometry 
(“easy” BCs)

Higher resolution, 
duct sub-section 
(“hard” BCs)

Credit:  
Ricardo Frantz  
          (Code: Xcompact3D)

data  
assimilation

Credit:  
Qi Zhou (Code: Diablo)

Experiments

“Real” flow but errors 
“Low” resolution
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