Collective dynamics in confined active suspensions

Adrien Lefauve

DAMTP, University of Cambridge

CUED Fluid Mechanics Seminar November 14, 2014

About me

Outline

1 Motivations and governing equations

Numerical simulations

Biologically active suspensions

Microorganisms self-propelling in a viscous liquid

- collective motion
- large-scale coherent flows

Figure: Bacterial swarming on a surface. Weibel Lab, University of Wisconsin

Motivations

- Applied
 - Efficient low-Re mixing! (Re = $\frac{Ud}{\nu} \sim \frac{10^{-5} \times 10^{-6}}{10^{-6}} = 10^{-5}$)
 - Chemical/pharmaceutical engineering
 - Optimal nutrient mixing in bacterial colonies

Figure: Mixing Saintillan (2012)

Figure: Artificial nanoswimmer Gibbs et al., *Nano Lett.* (2011)

Motivations

- Fundamental
 - Collective dynamics of active, interacting agents
 - Local, individual interactions \rightarrow large-scale coherent patterns?
 - Self-organisation (condensed matter physics, cell biology)

Hydrodynamic interactions

• A swimmer induces a local disturbance flow

Dominant far-field term: source dipole ($\sim 1/r^2$ decay) Liron & Mochon, J. Eng. Math. (1976)

$$\mathbf{u}^d(\mathbf{R}_i|\mathbf{R}_j, \sigma_j) = rac{1}{2\pi|\mathbf{R}_{ij}|^2} (2\hat{\mathbf{R}}_{ij}\hat{\mathbf{R}}_{ij} - \mathbf{I}) \cdot \sigma_j$$

with dipole moment
$$\sigma_j = \sigma[\dot{\mathbf{R}}_j - \mathbf{u}(\mathbf{R}_j)]$$

and
$$\textbf{R}_{ij} = \textbf{R}_i - \textbf{R}_j, ~ \hat{\textbf{R}}_{ij} = \textbf{R}_{ij}/|\textbf{R}_{ij}|$$

Figure: Rigid 2D confinement Tsang & Kanso, *Phys. Rev. E* (2014)

Figure: Source dipole Spagnolie & Lauga, JFM (2012)

Hydrodynamic interactions

- Response of individual particle to external flow
 - advection by flow
 - reorientation of fore-aft asymmetric particles with/against flow

$$\dot{\mathbf{R}} = \mathbf{v}_{s} \mathbf{p} + \mathbf{u} \dot{\mathbf{p}} = \mathbf{\nu}' \left(\mathbf{I} - \mathbf{p} \mathbf{p} \right) \cdot \nabla \mathbf{u} \cdot \mathbf{p} + \mathbf{\nu} \left(\mathbf{I} - \mathbf{p} \mathbf{p} \right) \cdot \mathbf{u} Brotto et al., Phys. Rev. Lett. (2013)$$

 \rightarrow 'large-tail' particles (vigorous flagella) align with the flow \rightarrow 'large-head' particles (weak flagella) align against the flow

Figure: Large-tail vs large-head dumbbell swimmer

Outline

2 Linear stability theory

Continuum description

Probability distribution function $\Psi(\mathbf{x}, \mathbf{p}, t)$ of finding a particle

- ${\scriptstyle \bullet}$ at position ${\bf x}$
- with orientation **p**
- at time t

Continuum description

 \bullet Conservation of particles \rightarrow continuity equation for $\Psi :$

$$\frac{\partial \Psi}{\partial t} = \underbrace{-\nabla_{\mathbf{x}} \cdot (\Psi \, \dot{\mathbf{R}}) - \nabla_{\mathbf{p}} \cdot (\Psi \, \dot{\mathbf{p}})}_{\text{advection}} + \underbrace{D \, \nabla_{\mathbf{x}}^2 \Psi + D_R \, \nabla_{\mathbf{p}}^2 \Psi}_{\text{diffusion}}$$

• Fluxes $\dot{\mathbf{R}}$ and $\dot{\mathbf{p}}$ require fluid velocity $\mathbf{u}(\mathbf{x}, t)$:

$$\mathbf{u}(\mathbf{x},t) := \int_{\mathbf{p}} \int_{\mathbf{x}'} \Psi(\mathbf{x}',\mathbf{p},t) \ \mathbf{u}^{d}(\mathbf{x}|\mathbf{x}',\sigma') \ \mathrm{d}\mathbf{x}' \ \mathrm{d}\mathbf{p}.$$

Saintillan & Shelley, Phys. Fluids 20, 123304 (2008)

Local phase properties:

- concentration: $c(\mathbf{x}, t) = \int_{\mathbf{p}} \Psi d\mathbf{p}$
- polarization: $\mathbf{P}(\mathbf{x},t) = 1/c \int_{\mathbf{p}} \mathbf{p} \Psi \, d\mathbf{p}$

Linear stability analysis

• Uniform, isotropic base state:

$$\Psi_0(\mathbf{x},t) = rac{c_0}{2\pi}, \qquad \mathbf{u}_0(\mathbf{x},t) = 0$$

• Small perturbations:

 $\Psi(\mathbf{x},\mathbf{p},t)=\Psi_0+\varepsilon\Psi'(\mathbf{x},\mathbf{p},t),\quad \mathbf{u}(\mathbf{x},t)=\varepsilon\mathbf{u}'(\mathbf{x},t)\quad\text{where }|\varepsilon|\ll 1$

- Linearize continuity for Ψ and uncouple **u** (incompressibility)
- Plane-wave perturbations: Ψ'(x, p, t) = Ψ(k, p)e^{ik·x+αt}
 k is the wave vector and α the complex growth rate.
- Natural timescale $\tau = D_R^{-1}$, lengthscale $\ell = \frac{v_s}{2D_R}$, fraction ϕ
- Dimensionless Péclet number : $Pe = \phi \times \nu \ell = \frac{\text{reorientation}}{\text{diffusion}}$

Large-head instability

Large heads are potentially unstable!

- For all Pe < -1 if k = 0 Brotto *et al.*, *Phys. Rev. Lett.* (2013)
- Finite k: instability only above threshold size $L_c = 2\pi/k_c$
- Unstable mode near the transition: travelling waves coupling concentration and polarization

Outline

Discrete particle simulation

- Periodic, 2D domain, N point particles with random $\mathbf{R}_i(0)$, $\mathbf{p}_i(0)$
- RK4 time integration 4N ODEs, all coupled by pair interactions

$$\begin{aligned} \dot{\mathbf{R}}_i &= \mathbf{v}_s \, \mathbf{p}_i + \mathbf{u}(\mathbf{R}_i) \\ \dot{\mathbf{p}}_i &= \nu \left(\mathbf{I} - \mathbf{p}_i \mathbf{p}_i \right) \cdot \mathbf{u}(\mathbf{R}_i) \end{aligned}$$

where

$$\mathbf{u}(\mathbf{R}_i) = \sum_{j
eq i} \mathbf{u}^d(\mathbf{R}_i | \mathbf{R}_j, \sigma_j) \quad \text{and} \quad \sigma_j = \sigma[\dot{\mathbf{R}}_j - \mathbf{u}(\mathbf{R}_j)]$$

Figure: Pair interactions

Nonlinear dynamics of large-heads

Heavily polarized density waves (N = 5000 particles, Pe = -2.2)

Nonlinear dynamics of large-heads

 Critical system size: qualitative agreement with linear stability

• Long-time dynamics: pattern formation

Figure: Flow during formation of a circular cluster

Nonlinear dynamics of large-tails

Nonlinear instability (here N = 3600, Pe = 3.7)

- large scale counter-rotating vortices
- quasi-periodic dynamics

Stabilizing external flow

Let us superimpose a uniform flow $\mathbf{U}_0 = U_0 \mathbf{e}_x$

- No more isotropic: net polarization $|\mathbf{P}_0|(\xi) > 0$, where $\xi = \frac{\nu U_0}{D_0}$
- A uniform suspension is now stable
- In q1D geometry: assume $\Psi(\mathbf{x}, \theta, t) = c(x, t) \Psi_0(\theta)$

Quasi-1D model with external flow

- $\bullet\,$ Equations for Ψ and u simplify a lot
- Conservation law for c(x, t):

$$\frac{\partial c}{\partial t} + \frac{\partial q}{\partial x} = D \frac{\partial^2 c}{\partial x^2} \quad \text{with flux} \quad q(x) = \left[U_0 + v_s P_0 \underbrace{\left(1 - \sigma c(x) \right)}_{\text{negative coupling}} \right] c(x)$$

• Traffic flow equation!

Figure: Persisting shock at tail, development of rarefaction wave at front

Traffic flow of quasi-aligned swimmers

- Traffic jam simulation (N = 4000, $\xi = +4$)
- Agreement with traffic flow equation

Outline

Motivations and governing equations

3 Numerical simulations

Conclusions

Collective dynamics of confined active suspensions:

- 2D, rigid confinement changes governing equations
 - different flow around swimmer (source dipole)
 - new dynamics: reorientation with/against flow
- Spontaneous emergence of collective motion
 - "large-head" swimmers
 - polarized density waves above a critical system size
 - formation of dense circular clusters
 - "large-tail" swimmers
 - quasi-periodic giant vortices
- Traffic flow behavior in q1D geometry
 - rescaling of single-swimmer dynamics by local concentration

Conclusions

Limitations:

- Theory + particle simulations rely on the dilute assumption
- Role of contact interactions for higher concentration?

Confined suspensions are tractable (2D & linearity of Stokes flow) \rightarrow well-suited for gaining insight into basic mechanism behind self-organization in more complex systems

Acknowledgements

Work done in Department of Mechanical Science & Engineering at University of Illinois at Urbana-Champaign (USA)

Figure: Dr. David Saintillan's research group

Thank you !