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@ Motivations and governing equations



Biologically active suspensions

Microorganisms self-propelling in a viscous liquid

@ collective motion

@ large-scale coherent flows

Figure: Bacterial swarming on a surface. Weibel Lab, University of Wisconsin



Motivations

o Applied
o Efficient low-Re mixing! (Re = Y ~

o Chemical/pharmaceutical engineering

e Optimal nutrient mixing in bacterial colonies

Figure: Mixing Saintillan (2012) Figure: Artificial nanoswimmer
Gibbs et al., Nano Lett. (2011)



Motivations

o Fundamental
o Collective dynamics of active, interacting agents
e Local, individual interactions — large-scale coherent patterns?

o Self-organisation (condensed matter physics, cell biology)

7/26



Hydrodynamic interactions

@ A swimmer induces a local disturbance flow

Dominant far-field term: source dipole (~ 1/r? decay)
Liron & Mochon, J. Eng. Math. (1976)
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Figure: Rigid 2D confinement Tsang & Figure: Source dipole
Kanso, Phys. Rev. E (2014) Spagnolie & Lauga, JFM (2012)




Hydrodynamic interactions

@ Response of individual particle to external flow
e advection by flow
e reorientation of fore-aft asymmetric particles with/against flow
R = Vsp+u
p = v (I—pp)-Vu-p+v(l—pp)-u
Brotto et al., Phys. Rev. Lett. (2013)
— 'large-tail’ particles (vigorous flagella) align with the flow

— 'large-head’ particles (weak flagella) align against the flow
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Figure: Large-tail vs large-head dumbbell swimmer
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© Linear stability theory
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Linear stability theory

Continuum description

Probability distribution function W(x, p, t) of finding a particle
@ at position x
@ with orientation p

@ at time t
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Continuum description

@ Conservation of particles — continuity equation for V:

ov

E:fvx~(wR)fvp.(wp)+Dviw+DRv§w

advection diffusion

e Fluxes R and p require fluid velocity u(x, t):
u(x, t) == // W(x',p,t) u’(x|x’,o’) dx’ dp.
pJx

Saintillan & Shelley, Phys. Fluids 20, 123304 (2008)

Local phase properties:
@ concentration:  c(x,t) = [ ¥ dp

@ polarization: P(x,t)=1/c [ pV dp
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Linear stability analysis

@ Uniform, isotropic base state:

Wo(x, t) = %7 Uo(X, t) =0

Small perturbations:

W(x,p, t) = Wo+eW'(x,p, 1), u(x,t) = eu(x,t) where e < 1

@ Linearize continuity for W and uncouple u (incompressibility)

Plane-wave perturbations: W/(x,p, t) = W(k, p)e*ot
k is the wave vector and o the complex growth rate.

Vs

2Dg’

@ Natural timescale 7 = DEl, lengthscale £ = fraction ¢

. . , . o ) __ reorientation
@ Dimensionless Péclet number : Pe = ¢ x vl = ~diffusion
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Linear stability theory

Large-head instability

Large heads are potentially unstable!
@ For all Pe < —1if k =0 Brotto et al., Phys. Rev. Lett. (2013)

e Finite k: instability only above threshold size L. = 27 /k.

@ Unstable mode near the transition:
travelling waves coupling concentration and polarization
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Figure: Growth rate (Pe = —2) Critical size vs Pe
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Numerical simulations

Discrete particle simulation

@ Periodic, 2D domain, N point particles with random R;(0), p;(0)

@ RK4 time integration 4N ODEs, all coupled by pair interactions
Ri = vpi+ u(R;)
pi = v(l—pipi) u(Ri)
where

(R)=> u!(R|R;,0;) and o =0[R —u(R))]
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Figure: Pair interactions
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Numerical simulations

Nonlinear dynamics of large-heads

Heavily polarized density waves (N = 5000 particles, Pe = —2.2)

Figure: Snapshot X — t concentration
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@ Long-time dynamics: pattern formation

@ Critical system size:

oz
PR
\f.ﬁ\xw.«m\\,ﬂmw\”
NN

Nonlinear dynamics of large-heads
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Figure: Flow during formation of a circular cluster



Nonlinear dynamics of large-tails

Nonlinear instability (here N = 3600, Pe = 3.7)
@ large scale counter-rotating vortices

@ quasi-periodic dynamics
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Figure: Particles snapshot Orientations
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Stabilizing external flow

Let us superimpose a uniform flow Ug = Upe,

@ No more isotropic: net polarization |Pg|(£) > 0, where { = ”DUO

@ A uniform suspension is now stable

@ In q1D geometry: assume W(x,0,t) = c(x,t) Vo(0)
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Quasi-1D model with external flow

@ Equations for W and u simplify a lot

e Conservation law for c(x, t):

dc 0q 0c . B
ER + X Dﬁ with flux g(x) = [Uo + vsPo (1 — ac(x))] c(x)
————

negative coupling

o Traffic flow equation!

c(x)

T
Figure: Persisting shock at tail, development of rarefaction wave at front
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Numerical simulations

Traffic flow of quasi-aligned swimmers

e Traffic jam simulation (N = 4000, £ = +4)

o Agreement with traffic flow equation

Figure: Snapshots X — t concentration

(simulation vs theory)
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@ Conclusions
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Conclusions

Collective dynamics of confined active suspensions:

@ 2D, rigid confinement changes governing equations
o different flow around swimmer (source dipole)

e new dynamics: reorientation with/against flow

@ Spontaneous emergence of collective motion

o "large-head” swimmers
@ polarized density waves above a critical system size

e formation of dense circular clusters

o "large-tail" swimmers
@ quasi-periodic giant vortices

@ Traffic flow behavior in q1D geometry

o rescaling of single-swimmer dynamics by local concentration
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Conclusions

Limitations:
@ Theory + particle simulations rely on the dilute assumption

@ Role of contact interactions for higher concentration?

Confined suspensions are tractable (2D & linearity of Stokes flow)

— well-suited for gaining insight into basic mechanism behind
self-organization in more complex systems
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