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Motivations and governing equations

Biologically active suspensions

Microorganisms self-propelling in a viscous liquid

collective motion

large-scale coherent flows

Figure: Bacterial swarming on a surface. Weibel Lab, University of Wisconsin
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Motivations and governing equations

Motivations

Applied

Efficient low-Re mixing! (Re = Ud
ν ∼

10−5×10−6

10−6 = 10−5)

Chemical/pharmaceutical engineering

Optimal nutrient mixing in bacterial colonies

Figure: Mixing Saintillan (2012) Figure: Artificial nanoswimmer
Gibbs et al., Nano Lett. (2011)
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Motivations and governing equations

Motivations

Fundamental

Collective dynamics of active, interacting agents

Local, individual interactions → large-scale coherent patterns?

Self-organisation (condensed matter physics, cell biology)
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Motivations and governing equations

Hydrodynamic interactions

A swimmer induces a local disturbance flow

Dominant far-field term: source dipole (∼ 1/r2 decay)

Liron & Mochon, J. Eng. Math. (1976)

ud(Ri |Rj ,σj) =
1

2π|Rij |2
(2R̂ij R̂ij − I) · σj

with dipole moment σj = σ[Ṙj − u(Rj)]

and Rij = Ri − Rj , R̂ij = Rij/|Rij |

Figure: Rigid 2D confinement Tsang &

Kanso, Phys. Rev. E (2014)

Figure: Source dipole
Spagnolie & Lauga, JFM (2012)
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Motivations and governing equations

Hydrodynamic interactions

Response of individual particle to external flow

advection by flow

reorientation of fore-aft asymmetric particles with/against flow

Ṙ = vs p + u

ṗ = ν′ (I− pp) · ∇u · p + ν (I− pp) · u
Brotto et al., Phys. Rev. Lett. (2013)

→ ’large-tail’ particles (vigorous flagella) align with the flow

→ ’large-head’ particles (weak flagella) align against the flow

Figure: Large-tail vs large-head dumbbell swimmer
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Linear stability theory

Continuum description

Probability distribution function Ψ(x,p, t) of finding a particle

at position x

with orientation p

at time t
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Linear stability theory

Continuum description

Conservation of particles → continuity equation for Ψ:

∂Ψ

∂t
= −∇x · (Ψ Ṙ)−∇p · (Ψ ṗ)︸ ︷︷ ︸

advection

+D∇2
xΨ + DR ∇2

pΨ︸ ︷︷ ︸
diffusion

Fluxes Ṙ and ṗ require fluid velocity u(x, t):

u(x, t) :=

∫
p

∫
x′

Ψ(x′, p, t) ud(x|x′,σ′) dx′ dp.

Saintillan & Shelley, Phys. Fluids 20, 123304 (2008)

Local phase properties:

concentration: c(x, t) =
∫
p

Ψ dp

polarization: P(x, t) = 1/c
∫
p
pΨ dp
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Linear stability theory

Linear stability analysis

Uniform, isotropic base state:

Ψ0(x, t) =
c0

2π
, u0(x, t) = 0

Small perturbations:

Ψ(x, p, t) = Ψ0 + εΨ′(x, p, t), u(x, t) = εu′(x, t) where |ε| � 1

Linearize continuity for Ψ and uncouple u (incompressibility)

Plane-wave perturbations: Ψ′(x, p, t) = Ψ̃(k, p)e ik·x+αt

k is the wave vector and α the complex growth rate.

Natural timescale τ = D−1
R , lengthscale ` = vs

2DR
, fraction φ

Dimensionless Péclet number : Pe = φ× ν` = reorientation
diffusion
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Linear stability theory

Large-head instability

Large heads are potentially unstable!

For all Pe < −1 if k = 0 Brotto et al., Phys. Rev. Lett. (2013)

Finite k : instability only above threshold size Lc = 2π/kc

Unstable mode near the transition:
travelling waves coupling concentration and polarization
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Figure: Growth rate (Pe = −2) Critical size vs Pe
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Numerical simulations
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Numerical simulations

Discrete particle simulation

Periodic, 2D domain, N point particles with random Ri (0), pi (0)

RK4 time integration 4N ODEs, all coupled by pair interactions

Ṙi = vs pi + u(Ri )

ṗi = ν (I− pipi ) · u(Ri )

where
u(Ri ) =

∑
j 6=i

ud(Ri |Rj ,σj) and σj = σ[Ṙj − u(Rj)]

Figure: Pair interactions
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Numerical simulations

Nonlinear dynamics of large-heads

Heavily polarized density waves (N = 5000 particles, Pe = −2.2)

Figure: Snapshot x − t concentration
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Numerical simulations

Nonlinear dynamics of large-heads

Critical system size:

qualitative agreement with
linear stability
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Long-time dynamics: pattern formation

Figure: Flow during formation of a circular cluster
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Numerical simulations

Nonlinear dynamics of large-tails

Nonlinear instability (here N = 3600, Pe = 3.7)

large scale counter-rotating vortices

quasi-periodic dynamics

Figure: Particles snapshot Orientations
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Numerical simulations

Stabilizing external flow

Let us superimpose a uniform flow U0 = U0ex

No more isotropic: net polarization |P0|(ξ) > 0 , where ξ = νU0
DR

A uniform suspension is now stable

In q1D geometry: assume Ψ(x, θ, t) = c(x , t) Ψ0(θ)
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Numerical simulations

Quasi-1D model with external flow

Equations for Ψ and u simplify a lot

Conservation law for c(x , t):

∂c

∂t
+
∂q

∂x
= D

∂2c

∂x2
with flux q(x) =

[
U0 + vsP0

(
1− σc(x)

)
︸ ︷︷ ︸
negative coupling

]
c(x)

Traffic flow equation!

c(
x
)

x

Figure: Persisting shock at tail, development of rarefaction wave at front
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Numerical simulations

Traffic flow of quasi-aligned swimmers

Traffic jam simulation (N = 4000, ξ = +4)

Agreement with traffic flow equation
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Figure: Snapshots x − t concentration

(simulation vs theory)
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Conclusions

Conclusions

Collective dynamics of confined active suspensions:

2D, rigid confinement changes governing equations

different flow around swimmer (source dipole)

new dynamics: reorientation with/against flow

Spontaneous emergence of collective motion

”large-head” swimmers
polarized density waves above a critical system size

formation of dense circular clusters

”large-tail” swimmers
quasi-periodic giant vortices

Traffic flow behavior in q1D geometry

rescaling of single-swimmer dynamics by local concentration
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Conclusions

Conclusions

Limitations:

Theory + particle simulations rely on the dilute assumption

Role of contact interactions for higher concentration?

Confined suspensions are tractable (2D & linearity of Stokes flow)

→ well-suited for gaining insight into basic mechanism behind
self-organization in more complex systems
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Conclusions

Acknowledgements

Work done in Department of Mechanical Science & Engineering at
University of Illinois at Urbana-Champaign (USA)

Figure: Dr. David Saintillan’s research group

Thank you !
26 / 26


	Motivations and governing equations
	Linear stability theory
	Numerical simulations
	Conclusions

